
A Googolplex of Go Games 
Matthieu Walraet                            January 9th, 2016

Introduction

The number of possible go games is very high. For “normal” games, it is often estimated to 10800

taking a maximum game length of 400 moves and an average number of 100 legal moves in each
position. Of course what is a normal game depends on the skill of players, there is much more
possible go games between true beginners playing randomly than between highly skilled players
trying to win.

Here we consider every possible go games allowed by the rules, even if it seems very artificial, like
a player  filling a good part  of the board while the opponent  is  playing only passes,  just  to be
captured and making room for more moves.

A googolplex is the number 1010100

This term, coined by Edward Kasner in 1920, is known in

popular culture as an extremely large number. Such a number is difficult to apprehend and is almost
never  reached  by real  world  computations.  (Of  course,  there  exist  vastly  greater  numbers,  for
example those you can obtain using Conway chained arrow notation.)

Previous results

The article “Combinatorics of go” [2] by John Tromp and Gunnar Farnebäck is mainly about exact
computation of number of go positions, on go boards up to 18x18 dimension. (These results will be
used latter.)

In chapter 6.4, they describe a technique, using properties of binary Grey codes, to visit a high

number of legal positions. This gives as lower bounds 1048
for game length and  101048

for

number of possible go games on a 19x19 board.



Main scheme
We can compute a lower bound of maximum go game length and of number of possible go game by
constructing a go game, and counting all variations allowed by this construction.

When we construct this game, we must ensure it respects the superko rule, that is a position is never
repeated. For that, we encode numbers in binary, either with black stones on the upper side or white
stone. In the center of the board, 3 intersections signals which side “controls” the board. 

+++ Setup phase

●++ Black controls    step b

●●+ White controls    step a

++○ White controls    step b

+○○ Black controls    step a

While  there  is  no  stone  in  the  three  center
intersections, no side has “control” yet. As this occurs
only  at  the  beginning  of  the  game,  there  is  no
repetition possible. 

Now, center area contains one stone, black side has 
control. B1 is the number encoded in binary by black 
stones marked with a triangle.

We say the game is now controlled by “B1 step b”. 
That means we can play anywhere in the unmarked 
place (here the bottom side of the board) without risk 
of repeating a position during the whole game before 
current control.



Of course we still have to avoid repeating a position 
during the current control. For now we will just add 
white stone to encode W1 number, so there is no stone 
taken.

Here is last position under “B1 step b” control.

This pattern of stones in marked positions (square and
triangle) will never occur again in the whole game, 
ensuring respect of superko rule. 

With move 75, we enter in “W1 step a” control.

We use this control to fill upper side of the board with
black stone. We don't care that we may encode 
numbers with black stones as the center square stones
gives control to “white step a”

Last position under “W1 step a” control. 



Playing move 120 both takes the stone and changes 
control to “W1 step b”. 

As the configuration of square stones is different, we 
can play in the upper side and encode B2 number in 
black stone. “Step a” and “step b” are two different 
“controls” even if they use same W1 number.

Last move of “W1 step b”.

Playing move 168 starts “B2 step a” control.



We fill bottom part of the board with white stones.

With move 207, we take them and enters in “B2 step 
b” control, starting a new cycle. 

We can go on until we run out of numbers. Here on a 
9x9 board we have 230 different numbers for each 
side.

At the end we can even create “B1 step a” control and 
fill the white part.

In summary:

Code Control phase Starts playing 
in center

Then proceeds with:

+++ Setup phase - Encode B1 number as black stones

●++ Black controls    step b black Encode Wi number as white stones

●●+ White controls    step a black Fill upper area with black stones

++○ White controls    step b white Encode Bi number as black stones

+○○ Black controls    step a white Fill lower area with white stones



Game length 

In a board of size NxN, N≥5 , N odd, the number of triangle positions is
(N+1)(N−3)

2
the 

usual board 19x19 has 160 of them. Number of “Bi” is 2
(N+1 )(N−3)

2 , and same for “Wi”.

For each “Bi step a” control, the white part is filled, this means N 2
+1
2

white stones have been 

played. Respectively N 2
+1

2
black stones have been played for each “Wi step b”. There is one 

pass for each stone played except 6 times during each cycle when color played changed.

The stones to encode “B1”  are played twice (at the beginning and the end of the whole scheme)

So length of the game is slightly more than (2N 2
−4 )2

(N +1)(N−3)
2

This gives a lower bound for 19x19 go games length of 718×2160
 about 1.049×1051

Number of different possible games

Number of variations by choosing Bn and Wn number order is:  (2
(N+1 )(N−3)

2 !)2

For 19x19 it is (2160!)2
about 101050.1446

and that's not counting order of playing stones.

We can also vary the this order, in each cycle each colors fills nearly half the board, in two steps
each. Only stones played in square marked intersections can't be switched (or only with border
stones, but we will ignore that possibility).

We can permute the order of playing the number encoding stones and the border stones during “step
b”, and also permute the stones filling the half board in “step a”. 

There are N border stones. If half of the digits of the encoded number are 1, the number of way to

permute stones playing is (N+
(N+1)(N−3)

4
)!×

(N+1)(N−3)
4

!

For each encoding number using less than half the stones, there is its opposite, exchanging 0 and 1.
We can combine calculation of permutations with these two numbers, and use following inequality:

(N+k−i)!(k+i)!(N+k+i)!(k−i )≥((N+k)!k !)2  with k being the half of the number of

digits of the encoded number and i the difference between number of 1 and k.



So the contributions of permutations of stones played during each step, for the whole game is more
than:

((N+
(N+1)(N−3)

4
)!×

(N+1)(N−3)

4
!)

2×2
(N+1)(N−3)

2

For a 19x19 board, its (99 !×80 !)2161

about 101050.9049

Multiplying also with contributions of Bn and Wn permutations it gives as lower bound for number
of possible go games on a NxN board, N odd : 

 (2
(N+1)(N−3)

2 !)2
((N+

(N+1)(N−3)

4
)!×

(N+1)(N−3)

4
!)

2×2
(N+1)(N−3)

2

For a 19x19 board it gives 101050.9744

number of games with this scheme.



First iteration
Main  scheme gives  already a  good  lower  bound  of  the  number  of  go  game,  but  it's  only  an
introduction of how “control” work. 

We have seen that when a “control” has started, let's say “Wk step b” has control, we can play
anything we want during this control without risking to repeat a previous position of the whole
game before this control phase. We must only ensure not to repeat a position within current control. 

When “Wk step b” begins, the whole upper board is empty. We can repeat the whole “main scheme”
on this upper side, encoding numbers in black stones on the upper left and in white stone in upper
right and with a “sub-control” area between them.

We have to ensure that we can perform the capture of each quarter of board, and that at the end of
the sub-scheme we can resume the main scheme. 

During the setup SWk subcontrol, we encode
number Bk,1 in triangles area. 

There are 49 triangles for 19x19 board.



During Bk,1 step  b  sub-control,  we encode
Wk,1 in white stones.

For now we avoid using area marked with
circle.

While in Wk,1 step a sub-control we fill the
black side.



While in Wk,1 step b sub-control, we encode
Bk,2 number. 

During  Bk,2 step  a  sub-control  we  fill  the
upper right area with stones so they can all
be taken and then the cycle goes on.



Let's say we are near the end of sub-scheme.
We need to be able to re-enter main scheme.

During W k,i step b control, with i=2^49, we
have encoded  Bk,1 number again.

With  white  K-16,  we  enter  Bk,1 step  a
control, we can as very first  number starts
directly at step b.

Then we directly play K-15 
Three  stones  of  the  same  color  in  square
marked area was and unused code for now,
we use it for “clean-up” control phase, the
opposite of “setup” control phase.



We fill  black  and  white  sides,  take  black,
then start filling everything.

Then we fill all the upper side of the board
except  one  of  the  places  marked  with
circles.

After  capture,  everything  is  ready  for
starting  encoding  Bk+1 number  in  main
scheme. 
As long as black stone is needed in M12, of
course.

 



However,  for  each  stones  in  circle  area
needed  to  encode  Bk+1, we  can  repeat  the
whole  sub-scheme.  Every time there  is  an
additional  black  stone  played  there,  it
ensures we will not repeat an already played
position.

Here, we are back in the setup phase of the
sub scheme. (Playing these white stones in
advance is a possible variation.) 

Once the last  needed black stone in  circle
area is played, we go back in main scheme.
This means we go on encoding next control
number.  Thanks  to  the  last  “circle”  black
stone,  we  don't  risk  repeating  a  position
played during any sub-scheme.

The sub-scheme can be played also during main scheme setup phase, and on each sides, so we can
play it exactly 2161 times.

For some numbers of the main scheme, 1 over 216, the sub-scheme will not be possible at all. In the
whole game, as all numbers are used, we can play the sub-scheme a number of times in average
exactly half the number of circles (here 16).

During a white + black step in a sub-scheme, we play full semi-left side, plus semi-right side, plus
half of circle, in total 9 board lines, 171 stones.

Number of “black + white” steps in sub-scheme is 2161 (number of control phase in main scheme)
times 249 (49 triangles area in sub-scheme) times 16/2 (half the number of circle mark). 

This gives a new lower bound for the length of the game in 19x19: 

171×2213 about 2.25×1066



Second iteration
Each corner in sub-scheme has room for a sub-sub-scheme.
Even is  there is  not  much place left  (8  triangle  place)  it
worth a lot.

There are 2214 sub-control. 

So black+white sub-sub-control is played  2214×28×
5
2

times, with 46 stones in average.

Lower bound for the length of the game in 19x19: 46×5×2221
about 7.55×1068

If we only count permutations of black and white stones during sub-sub-scheme it gives:

(18 black stones + 4) ! 4 remainings! (7 white stones + 4)!, (4 remaining) !, all that power the
number of black+white sub-sub-controls.

(11! 4 !22! 4 !)(5×2221)
about 101068.72



Ternary scheme

Encoding control number in binary in not the most efficient. An intersection has three possible
states, so we can a ternary encoding. As in go each group of stone must have at least one liberty,
only a part of these numbers corresponds to a valid positions. 

Playing ternary mode

We can play the main scheme, sub-scheme and sub-sub-scheme in ternary mode nearly the same
way it was done in binary mode.

During a “step a phase”, playing the needed stones in any order is valid, as final position is valid.
No group of stones is taken so there is no risk to repeat the position within current control.

During either a “step b phase” or a “clean-up phase”, it's less obvious as we must play to fill an area
containing an arbitrary pattern of black and white stones. We can avoid repeating the position by
following this algorithm: (Assuming we have to fill the area with black stones)

1.  Play all valid black moves from the border groups, except the intersection that we keep to
take all the stones at the end (marked square or circles). In the case of main scheme step b
phase, there can be two border groups sharing the same marked square liberty,  in other
cases there is only one.  White stones can be taken doing this. 

2. When there is no more valid black move on border groups, either the area is filled with
black (so it's done we can take them all) either there is one or more white groups in the area
in contact of border groups. Choose one of these white group. 

3. While this white group has more than two liberties, play a white stone in one. Black stones
can be taken doing this. When there is only one liberty left, play it with black to capture.
Resume to step 1. It will at least fill the area formerly occupied by white group just taken.

While repeating the cycle, the black border group only grows. The capturing black move at the end
of step 3 can't break superko rule, as it takes white stones that were in contact of black border
group. 

 



We will use this result from [3], that gives the exact number of valid go positions for go board up to
18x19. 

Board size Number of valid go position

2 x 4
6 x 8
8 x 9
8 x 11

4125
28119999225435593650933
5882748866432370655674372752123193
207311104441429909372420835795083252630341

 

Two valid positions side by side give a also a valid
position.

Main scheme 8x9  and 8x11

5882748866432370655674372752123193 x

207311104441429909372420835795083252630341
= 1.219×1075

Sub scheme 6x8 and one intersection

28119999225435593650933×2 = 5.624×1022

  Sub-sub-scheme 2x4 : 4125   

(We can use 58 instead on 57 for 2x2, as they are always connected to existing stones, so the full
2x2 board in same color is valid)

When numbers where encoded in binary, a circle position could be used half the time. Here, the part
of circle position encoded in ternary can be used less than third of the times, but more than a quarter
of the time. 

So sub-scheme can be repeated 16/4 = 4 times per main scheme control, 8 times per cycle.

Sub-sub-scheme can be repeated 1/2 + 4/4 = 3/2 times per sub-scheme control, 3 times per cycle.

Number of times “black+white sub-sub-control” is played:

 (1.219×1075)×8×(5.624×1022)×3×4125 = 6.787×10102

If we keep (for now) 46 stones played in average, it  gives as lower bound for maximum game

length on a 19x19 board: 3.122×10104

For number of game, we count only permutations within all “black+white sub-sub-controls”.

And for  number  of  permutation  per  cycle  if  we also  keep for  now the  way it  was  computed
previously (it's a low estimate) : 11! 4! 22! 4!



(11! 4 !22!4 !)6.787×10102

 about 1010104.3

The number of permutations of the “main scheme” and of the “sub-controls” are small relative to
this number, so we can ignore their contributions.

Refining computations
For the last steps, the sub-sub-control, we can write a program to compute more precise numbers.
[4]. Actually it doesn't improve very much the overall number. 

A 2x4 go board has 4125 possible positions. 

In the corner, we can use more positions, as white stones on S
column and row 16 can't be taken. This gives 4779 positions.

In  the  left  triangles  positions,  all  black  stones  don't  need
internal liberties. This give 4996 different positions. However,
in the corner scheme we can't use more positions here than in
corner. 

In corner:

For each possible position, there are different ways to obtain it on the board (“step b” part) and then
from this to fill the area in white stones (“step a” part). Some stones can be taken in the process,
either for “step a” or “step b”, as long as there is no repetition. To ensure the superko, if border is
white (as on figure above) we allow only black stones to be captured. 

For “step a” if we already are in the target position (all in white stones) there is only 1 way to obtain
it and its length is 0. For the other positions, we can compute number of ways and maximal length
recursively by considering all white moves and all black moves that don't take any white stone.
Number of ways is the sum of the ones of next moves one. Max length is one plus the maximum of
max length of all next moves. This is quite fast thanks to memoization.

For  “step  b”,  we can  use  the  same technique,  as  long as  we are  careful  that  some branch of
recursion are dead ends (black stones played that can't be taken without unwanted white ones.)
However, this can be quite slow, as memoization has to restart for each considered target position. 

Another solution is to go backward. For each given position we compute recursively the number of
ways (and max length) to reach the starting (here empty) position by playing backward.

As during the sub-sub-scheme we plays “step b” and “step a” for all 4779 positions, we add all the
length and multiply all the number of ways, giving for the corner part.

Maximum length (not counting passes): 235427

Number of games: 1.07×10119526



In the other part:

We could use the same technique as before, with a little optimization. 

You can play white stones only on triangle places (including
P19)

All square marked black stones can be considered together in
the recursion. You only consider the number of stones in the
pool, and when you play the pool, you count there is K ways to
get to the position with K-1 stones in the pool.

However, even with this optimization, computation is outside the reach of my current program. 

So to  help,  we consider  above  diagram to  be  the  starting  point  of  the  program,  and compute
manually how to get there. Of course some possibilities are missed.

We can play the triangle stones (black and white) in
any order, then take the 9 white stones, with black M17
(or choose another of the 10 black stones). Then play 8
white stones in columns N and O, to take them with
black P19.   

Length is 18+1+8+1 = 28

Number is 18 !8 !10

We can place the square marked stones anywhere in this sequence of 28 moves. If there are k
squares, first one has 29 possible place, last one has 28+k. 

Game length is 28+k    Number of games: 18 !8 !10
(28+k )!

28 !

There are more possibilities with less white stones played. For now we won't try to count them.

For this case, with two white stone marked circles played, and so 10 square.

Max length of game: 38    Number of games:  18 !8 !10
38 !
28 !

=4.428×1036  



Number of circles: 

In the worst case, there is 5 white stone at the end of sub-sub-scheme played, but this mean we have
played the sub-sub-scheme 5 times, first one with 0 circle white stones (12 square black stones), and
last one with 4 circle white stones (8 square black stones).  For each case where there is 8 squares,
there is at least one case where there is 12. Idem for resp 9 and 11. So we can use the 10 value.

Using the intermediate position, with all black stones placed as starting position, the program can
compute the max length and number of games for the 4996 possible positions, and select the 4779
best one (as we can't play more). This gives:

Maximum length: 166155

Number of games: 4.191×1063224

We have also to count 4779 times the “manual computation” of how to go from empty position to
the intermediate one.

Maximum length (not counting passes): 4779×38=181602

Number of games: (18 !8 !10
38 !
28 !

)
4779

=2.436×10175132

This gives for the whole ternary sub-sub-scheme

Maximum length (not counting passes): 583184

Number of games:  1.0923×10357883  

From previous chapter, number of times “sub-sub-scheme” is played:

(1.219×1075
)×8×(5.624×1022

)×3 = 1.645×1099

 (6.888×1078
)×12×(2.441×1022

)×3 = 6.052×10102

This gives for the whole game:

Lower bound for maximum go game length:  583184×1.645×1099=9.593×10104

Lower bound for number of possible go games: 

                                                             (1.0923×10357883)1.645×1099

= 1010104.77



Acknowledgments
Many thanks to Arnaud Knippel and John Tromp for their comments on early versions.

References
[1] Sensei Library http://senseis.xmp.net/?NumberOfPossibleGoGames (version 43)

[2]  John Tromp and Gunnar Farnebäck, Combinatorics of Go, 2009, 
https://tromp.github.io/go/gostate.pdf

[3] http://tromp.github.io/go/legal.html

[4] You can find materials used for this article here: http://matthieuw.github.io/go-games-number/ 

• SGF files used to create go diagrams

• Programs used for computations (in Python) 

http://senseis.xmp.net/?NumberOfPossibleGoGames
http://matthieuw.github.io/go-games-number/
http://tromp.github.io/go/legal.html
https://tromp.github.io/go/gostate.pdf

	Introduction
	Previous results
	Main scheme
	Game length
	Number of different possible games

	First iteration
	Second iteration
	Ternary scheme
	Playing ternary mode
	Refining computations

	Acknowledgments
	References

